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Tunable Optical Nanoantennas 
Incorporating Bowtie Nanoantenna 
Arrays with Stimuli-Responsive 
Polymer
Qiugu Wang1, Longju Liu1, Yifei Wang1, Peng Liu1, Huawei Jiang1, Zhen Xu1, Zhuo Ma2, 
Seval Oren1, Edmond K. C. Chow3, Meng Lu1,4 & Liang Dong1

We report on a temperature-responsive tunable plasmonic device that incorporates coupled bowtie 
nanoantenna arrays (BNAs) with a submicron-thick, thermosensitive hydrogel coating. The coupled 
plasmonic nanoparticles provide an intrinsically higher field enhancement than conventional individual 
nanoparticles. The favorable scaling of plasmonic dimers at the nanometer scale and ionic diffusion 
at the submicron scale is leveraged to achieve strong optical resonance and rapid hydrogel response, 
respectively. We demonstrate that the hydrogel-coated BNAs are able to sense environmental 
temperature variations. The phase transition of hydrogel leads to 16.2 nm of resonant wavelength 
shift for the hydrogel-coated BNAs, whereas only 3 nm for the uncoated counterpart. The response 
time of the device to temperature variations is only 250 ms, due to the small hydrogel thickness at 
the submicron scale. The demonstration of the ability of the device to tune its optical resonance in 
response to an environmental stimulus (here, temperature) suggests a possibility of making many other 
tunable plasmonic devices through the incorporation of coupled plasmonic nanostructures and various 
environmental-responsive hydrogels.

Active plasmonic devices have attracted much attention, because of an increasing demand for tunable optical prop-
erties to accommodate flexible application requirements. Often, these tunable devices are structurally variable, or 
hybridizing functional materials (e.g., liquid crystal, semiconductor, phase-change media, and etc) with plasmonic 
structures1,2. Various tuning mechanisms (e.g., mechanical stretching3, thermo- and electro-mechanical4–6, electro-, 
magneto-, and thermo-optical7–10, and electron beam manipulation11) were studied to regulate their structural 
configurations or refractive indices of surrounding media. Recently, stimuli-responsive, surface-bound hydrogels 
have been suggested as a promising candidate to realize active plasmonic devices12–24. These polymers are sensi-
tive to different stimuli (e.g., temperature, pH, light, glucose, electric field, and ions strength) by changing their 
volume or shape25,26. Most of the existing efforts in active plasmonics with hydrogels are mainly focused on using 
metallic nanoparticles or islands attached to polymer brushes12–19, and on functionalizing gold (Au) films with 
hydrogels20,21. As these nonlithographic nanoparticles have relatively poor control over their shape and size, fine 
tuning for optical properties of the nanoparticles-hydrogel composites is challenging; also, their optical responses 
usually have undesirable broad resonance bands. Lithographically nanopatterned particles have thus been utilized 
to integrate with hydrogel21–24, but almost all the reported research dealt with isolated nanoparticles unfavorable 
to achieving high field enhancement, thus hindering the improvement in their tuning range and sensitivity to 
specific environmental changes.

We herein report on a temperature-responsive coupled plasmonic bowtie nanoantennas (BNAs) device capable 
of tuning its resonance properties in response to changing environmental conditions. In contrast to individual 
nanoparticles, coupled plasmonic nanoparticles provide an intrinsically higher field enhancement. Therefore, the 
integration of the BNAs with stimuli-responsive hydrogel is expected to bring a synergistic effect to improve tuning 
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of active plasmonics in response to environmental changes. Basically, plasmonic BNA is coupled metallic nanopar-
ticle dimers with two tip-to-tip nanotriangles27. The nanoscale air gap between the nanotriangles allows for tight 
confinement and large enhancement of optical fields through the excitation of surface plasmons (SPs). This effect 
has been harnessed for many applications, such as high-harmonic generation28, florescence enhancement29, nano-
lasing30, and optical trapping31,32. In this study the thermally tunable BNAs are formed by simply coating the top 
surface of BNAs with a submicron-thick, thermosensitive hydrogel. As a local environmental temperature changes, 
there will be a change in the refractive index of hydrogel, accompanied by swelling or deswelling behavior of the 
hydrogel cross-linked network in water. This will result in changing optical characteristics of the hydrogel-coated 
BNAs. Herein, the scaling of plasmonic dimers and ionic diffusion is favorably leveraged to achieve strong BNA 
resonance and rapid hydrogel response time, respectively. The creation of the temperature-responsive BNAs takes 
advantages of these scaling properties.

Results and Discussion
We demonstrate the stimuli-responsive BNAs using thermosensitive poly(N-isopropylacrylamide) or PNIPAAm 
hydrogel that expands at low temperatures and contracts at high temperatures with a volume phase transition 
temperature (VPTT) at approximate 32 °C. The volumetric change of hydrogel causes a continuous and reversible 
change in its refractive index, typically between 1.36 and 1.4633. As the degree of swelling drastically changes around 
the VPTT, the hydrogel-coated BNAs present a considerable resonant wavelength shift of 16.2 nm. In contrast, with 
the same temperature change, the uncoated device yields only 3 nm resonant wavelength shift. Furthermore, the 
hydrogel-coated BNAs respond to environmental changes rapidly within 250 ms because the thickness of hydrogel 
is reduced to a submicron scale for fast ion diffusion. The present BNAs device is structurally simple and can be 
modified to incorporate many other hydrogels that respond, for example, to light, pH, electric fields, and antigens, 
for use as physical, biological or chemical sensors.

In this study, 50 nm thick Au BNAs were patterned in 428 nm spaced square arrays covering an area of 
500 ×  500 μ m2 on a 25 nm thick indium tin oxide (ITO) coated glass substrate (Fig. 1a). Each bowtie consists of 
two equilateral triangles with a side length of 150 nm and a tip-to-tip distance of 20 nm (see the inset of Fig. 1a). 
We first measured the reflection spectra of the bare BNAs (without hydrogel coating) using a spectroscopic meas-
urement setup. For the transverse magnetic (TM) polarization, the excitation light has the electric field component 
along (parallel to) the nanogap direction of the bowtie. Figure 1b shows that the uncoated BNAs have a resonance 
at 838 nm for TM polarization and the other at 750 nm for transverse electric (TE) polarization. We then performed 
full wave simulation using a finite element analysis method. The simulation results show a good agreement with the 
experimental ones in terms of their resonance positions (Fig. 1b). The minor difference in the spectra may be attrib-
uted to imperfect structural uniformity of the fabricated device. Figure 1c,d show the electric field distributions 
at the resonances under TE and TM polarizations. In the case of TM polarization, the surface plasmon resonance 

Figure 1. (a) Scanning electron microscopy (SEM) image for the bare Au BNAs without a hydrogel coating. 
The inset shows a pseudo-color SEM image for a close-up of BNAs. (b) Experimental and simulated reflection 
spectra of the uncoated BNAs in water under normally incident TE and TM polarized light. (c,d) Normalized 
electric field distributions at the resonances under the TE (c) and TM (d) polarization, respectively. The color 
scale bars show the normalized electric field amplitude relative to the incident field |E0|.
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leads to significant field confinement inside the nanogap of the bowtie with a maximum amplitude enhancement 
factor of 38, while under TE polarization, the “hot spots” occur at the two base corners of each triangle with a much 
lower maximum enhancement factor of 12. Therefore, the strong ability of the BNAs to enhance the local field 
amplitude, especially at the TM resonance, is promising to enable effective tuning of their optical characteristics 
by minute changes of the surrounding index.

To form the proposed BNAs, we coated the top surface of the BNAs with a 750 nm thick PNIPAAm hydrogel 
layer34 (Fig. 2a–c). The fabrication details are described in Materials and Methods. We studied optical responses 
of the hydrogel-coated and uncoated BNAs to local environmental temperature changes. Figure 2d shows the 
reflection spectra of the two devices at room temperature (22 °C), both with normal incidence of non-polarized 
light. Immersing the uncoated BNAs in water caused a resonant wavelength red shift of 83 nm and 40 nm to the 
TM and TE modes, respectively. After the uncoated device were coated with PNIPAAm hydrogel, the TM and 
TE resonances red shifted by 92 nm and 50 nm, respectively. By immersing the hydrogel-coated device in water 
at 22 °C, both the TE and TM resonances red shifted, but with different amounts: 25 nm for the TM mode and 
7.5 nm for the TE mode. It is also noteworthy that when immersed in water, the two devices shifted their resonant 
wavelength in an opposite direction. This is because the as-polymerized hydrogel on the BNAs initially absorbed 
water to reach an initial equilibrium, giving rise to an increase in physical volume, in accompany with a decrease 
in refractive index, thus causing a blue resonance shift. In addition, the introduction of the hydrogel to the surface 
of the BNAs did not significantly influence the bandwidth of the plasmonic resonances.

Figure 3 shows the reflection spectra of the hydrogel-coated and uncoated BNAs as the environment temper-
ature changes from 22 to 42 °C. First, when responding to an increase in temperature, the hydrogel-coated device 
showed a larger increase in reflection intensity than the uncoated counterpart, because of a larger increase in 
refractive index for the hydrogel-coated BNAs. As for the resonance response to increasing temperature, the TM 
resonance peak of the hydrogel-coated device significantly red shifted by 16.2 nm, while the TE resonance peak 
shifted by 8 nm (Fig. 3b). This difference may result from the higher field enhancement factor at the TM mode 
than that at the TE mode. Figure 4a shows that the majority of the resonance shift occurred around the VPTT of 
the hydrogel, due to the phase transition induced large index change, confirming the function of the hydrogel in 
tuning the optical properties of the hydrogel-coated BNAs.

To estimate how the refractive index of the hydrogel coating changed with temperature, we first plotted the 
TM and TE resonant wavelengths of the Au BNAs with respect to the refractive indices of different surrounding 
media, including air (n =  1), water (n =  1.33), and a dry hydrogel layer (n =  1.48)35,36. The slopes of the two plots 
in the inset of Fig. 4b indicate that the BNAs have the refractive index sensitivity of 248 nm/RIU (RIU: refractive 
index unit) and 129 nm/RIU for the TM and TE resonances, respectively. Based on the resonance wavelength shift 

Figure 2. (a) Fabrication processes for the temperature-responsive BNAs. (b) SEM image of the hydrogel-
coated BNAs. (c) SEM image showing the morphological difference between the hydrogel-coated and the 
uncoated BNAs. The hydrogel at the edge was intentionally unexposed to ultraviolet (UV) light during the 
device fabrication. (d) Reflection spectra of the uncoated BNAs (upper panel) and the hydrogel-coated device 
(lower panel) in air and water at 22 °C under non-polarized normal light incidence.
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(Fig. 4a) of the hydrogel-coated BNAs and the refractive index sensitivity obtained above, the refractive index of 
the hydrogel coating at different temperatures was extracted. As the temperature increased from 22 °C to 42 °C, 
the refractive index increased from 1.37 to 1.435, with a total index variation of 0.065 (Fig. 4b). Essentially, the 
effective refractive index variation of the BNAs may be attributed to the following factors. The dominating factor 
is the volume change induced index change of the hydrogel coating. As the local temperature increased by 20 °C, 
the refractive index of the hydrogel was significantly increased by 4.74%. Another factor relates to changes in 
thermophysical properties of other device materials (i.e., water, Au, and ITO-coated glass), which is considered 
to have an insignificant effect on the resonance shift, as evident by a maximum 3 nm and 1.6 nm shift of the TM 
and TE mode resonance peaks, respectively, of the uncoated BNAs (Figs 3a and 4a). The temperature induced 
dispersion change of Au may also contribute to the observed resonance shift of both the hydrogel-coated device 
and the uncoated counterpart, in accompany with a minor decrease in quality factor. At 830 nm near the TM mode 
resonance of the BNAs, as the temperature increases from 22 °C to 42 °C, the real part of Au permittivity remains 
almost the same at the value of − 8, while the imaginary part changes from 1.6 to 1.937, which leads to an increase 
in radiative losses37. This, in turn, may cause a decrease in collective coupling of neighboring bowties, thus slightly 
red shifting the TM mode resonant wavelength.

To further demonstrate the ability of the BNAs to dynamically respond to environmental temperature changes, 
we applied a temperature stimulus by flowing warm water (42 °C) over the surface of both the hydrogel-coated 
and uncoated BNAs in a microfluidic channel (see Materials and Methods). Figure 5 tracks the TE and TM mode 
resonant wavelengths of the two devices during temperature rising and natural cooling. For the uncoated device 
(Fig. 5a), the resonance shift of each resonance mode has a similar trend with the temperature variation. As the 
warm water arrived, the resonance shift of each peak reached a maximum value of about 3 nm for TM mode and 
1.6 nm for TE mode. As the device naturally cooled down, the resonance peaks progressively blue shifted until 
a new temperature stimulus came. For the hydrogel-coated device (Fig. 5b), the overall resonance shift patterns 

Figure 3. (a) Reflection spectra of the uncoated BNAs at different temperatures. (b) Reflection spectra of the 
hydrogel-coated BNAs at different temperatures. The spectra were measured under normally incident non-
polarized light.

Figure 4. (a) TM and TE mode resonance shifts of the hydrogel-coated and uncoated BNAs as a function of 
temperature. (b) Calculated refractive index of the PNIPAAm hydrogel as a function of temperature. The inset 
shows the TE and TM resonant wavelengths of the BNAs as a function of environmental refractive index n. The 
yellow arrows indicate the different surrounding media, including air, water, and dry hydrogel35,36.
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are similar to those for the uncoated one, except for having a much larger amplitude at the level of 16.2 nm for 
TM mode and 8 nm for TE mode. Figure 5b further confirms the phase transition effect of the hydrogel around 
32 °C on the resonance shift of the device. The resonant wavelength blue shifted much faster at 29–35 °C than it 
did in other temperatures. Therefore, the hydrogel-coated device is able to dynamically sense the environmental 
temperature variations and take action to shift its resonance shift.

To quantify how fast the hydrogel-coated BNAs respond to temperature changes, we tracked changes in reflec-
tion intensity of the hydrogel-coated BNAs at the TM mode wavelength of 847 nm at 22 °C. In this study, warm 
water at a raised temperature (i.e., 30, 32, 35, or 37 °C) was continuously injected into the channel such that the 
surface temperature of the BNAs remained constant. As the warm water flowed over the device, the reflection 
intensities at the two fixed wavelengths reached maximum or plateau values in just about one second (Fig. 6). It 
should be pointed out that a response time of only 250 ms was observed for the device; this refers to the time from 

Figure 5. Dynamic tracking of TE and TM mode resonance peaks for the uncoated BNAs (a) and 
the hydrogel- coated BNAs (b) at different temperatures. The upper panels in (a,b) show the changing 
environmental temperatures.

Figure 6. Dynamic tracking of reflection intensity of the hydrogel-coated BNAs at different temperatures. 
Water at different temperatures (37, 35, 32, and 30 °C) flowed over the surface of the BNAs located on the 
bottom of a microfluidic channel.
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being exposed 42 °C warm water to a clear intensity change shown on the spectrometer. Such a short response 
time is attributed to the use of the submicron hydrogel coating, because the time response of the volume change 
approximately follows the square of the dimension as the hydrogel structure reversibly expands and contracts, 
depending on the temperature of the surrounding environment. As the temperature was kept constant, the hydrogel 
remained in a contracted state where no volumetric change of the hydrogel occurred. As a result, the resonant 
wavelength remained unchanged, forming the intensity plateau.

While this study utilizes the PNIPAAm hydrogel with a fixed VPTT as a model hydrogel to proof the concept 
of stimuli-responsive BNAs, the use of multiple thermoresponsive hydrogels with different VPTTs for multiple 
temperature-responsive BNAs will make it feasible to program the response of each individual BNAs device where 
a specific hydrogel coating is used38. This will provide adequate flexibility in the design of stimuli-responsive BNAs. 
Furthermore, a variety of hydrogels can be used to further diversify the tuning mechanisms and their applica-
tions39. For example, functionally complex BNAs can be realized to act as biological and chemical sensors to detect 
multi-environmental parameters, and subsequently generate optical outputs (resonant wavelength, and optical 
intensity). By working in the scale range of submicron for stimuli-responsive hydrogels where ion diffusion pathway 
is favorably short, and by working in the scale range of nanometers for BNAs where the localized field is sensitive 
to small local index changes, the stimuli-responsive BNAs will bridge local environmental input parameters with 
optical resonance outputs through the use of stimuli-responsive hydrogels.

Conclusions
In this work, we have demonstrated a temperature-responsive BNAs device by coating the plasmonic dimers with 
a submicron-thick thermoresponsive hydrogel. Upon the temperature variations, the water content of hydrogel 
varies due to the transition of hydrogel from hydrophobic to hydrophilic state and will gradually alter the refractive 
index of hydrogel. Because of the large field enhancement of the plasmonic modes in the BNAs, the spectra shift 
of resonances can indicate refractive index changes. The experiment results show that for the hydrogels-coated 
BNAs, a 16.2 nm of resonance shift was observed, compared to a 3 nm shift for the uncoated bare BNAs. Our study 
suggests a possibility of making environmental-sensitive plasmonic devices through the incorporation of coupled 
plasmonic nanostructures and environmental-responsive materials.

Materials and Methods
The NIPAAm hydrogel precursor solution was prepared according to the recipe described in ref. 34. The hydrogel 
solution contained 14.3 wt% NIPAAm, 2 wt% crosslinking agent N,N′-methylenebis (acrylamide) (99%) (BIS), 
and 2 wt% photoinitiator 2-hydroxy-4′-(2-hydroxyethoxy)-2-methyl propiophenone (98%) in distilled water (all 
purchased from Sigma-Aldrich).

The BNAs were fabricated on a 25 ×  25 ×  0.42 mm3 ITO-coated glass slide. E-beam lithography was used to form 
nanopatterns of BNAs in poly(methyl methacrylate) resist (Sigma-Aldrich). The area of the BNAs is 500 ×  500 μ m2 
with a periodicity of 428 nm in each direction. Each bowtie has a length of 150 nm and a tip-to-tip distance of 
20 nm. A 5 nm thick titanium adhesion layer and a 50 nm thick Au layer were evaporated onto the sample using 
an e-beam evaporator. Subsequently, a lift-off process was used to remove the metal from the regions where the 
e-beam resist remained. The sample was immersed into pure acetone with sonication for 20 mins. Therefore, the 
Au BNAs were formed.

To coat the NIPAAm hydrogel on the BNAs, a shallow air cavity was created between the ITO-coated glass slide 
and a polyethylene terephthalate (PET) slab. Here, a 750 nm thick photoresist was spin-coated and patterned on 
the glass slide to form multiple spacers. The PET slab was supported by these photoresist spacers. Therefore, the 
750 nm thick air cavity was formed. Subsequently, the hydrogel precursor solution was injected into the cavity at the 
edge of the cavity by using a pipette. The sample was cooled down on a cooling stage with a surface temperature of 
5 °C, and then, was exposed to UV light (wavelength: 365 nm, intensity: 74 mW/cm2) for 5 s. The low-temperature 
exposure enabled enhancing optical transparency of the hydrogel. Lastly, the PET slab was peeled off and nonpo-
lymerized residual monomer was removed by rinsing the sample with ethanol and water.

Optical spectra of the sample were measured using a spectroscopic measurement setup. The incident light 
was coupled from a 150 watts quartz halogen lamp using a multimode fiber and focused on to the BNAs by a 
60×  objective lens (NA =  0.85). A polarizer was inserted between the light source and the objective to control the 
polarization state of the excitation light.

Optical full wave simulation was carried out using a finite element method based commercial package COMSOL 
Multiphysics. The geometric parameters of the BNAs were extracted from the SEM image of the fabricated device. 
The curvature radius at the triangle apex was set to 14 nm. The glass substrate was considered to have an infinite 
thickness. The 25 nm thick ITO layer between the substrate and BNAs was also included in the model of the device.

To facilitate changing environmental temperatures, a microfluidic channel (1 mm wide, 750 μ m high, and 15 mm 
long) was built on the top of the BNAs. To form the channel, a 100 μ m thick glass coverslip (Sigma-Aldrich) was 
placed 750 μ m above the BNAs with double sided adhesive as spacers. A photopatternable polymer solution con-
sisting of isobornyl acrylate, tetraethylene glycol dimethacrylate, and 2,2-dimethoxy-2- phenylacetophenone (all 
purchased from Sigma-Aldrich) with a weight ratio of 32:1.7:138, was injected into the chamber formed between 
the coverslip and the device surface using a pipette. A film photomask (Fineline Imaging) was used to define the 
patterns. The UV light intensity was set to 8.4 mW/cm2. After 20 s exposure, the channel was developed by soaking 
the device in pure ethanol (Sigma-Aldrich) for 2 min, followed by baking on a hotplate at 60 °C for 1 hr. The inlet 
and outlet of the chambers were punched through the glass slides by using a conventional milling machine. Water 
with different temperatures were injected into the channel and flowed over the top surface of the device. The local 
temperature was monitored by a thermocouple probe (Omega HH506RA multilogger thermometer) placed in 
contact with the surface of the device.
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